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Abstract
We develop a semi-empirical many-body interatomic potential suitable for large
scale molecular dynamics simulations of magnetic α-iron. The functional
form of the embedding part of the potential is derived using a combination
of the Stoner and the Ginzburg–Landau models. We show that it is
the symmetry broken solutions of the Ginzburg–Landau model describing
spontaneous magnetization of atoms that provide the link between magnetism
and interatomic forces. We discuss a range of potential applications of the new
method.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The significance of taking magnetic effects into account for the development of sufficiently
accurate models of interatomic interactions in α-iron has recently been recognized as a problem,
the resolution of which is essential for the development of predictive models of iron-based alloys
and steels for fusion and advanced nuclear applications. For example, the authors of a recent
comprehensive review of the currently available modelling methodologies [1] noted that ‘...
the absence of a physically sensible treatment of magnetization points to more fundamental
problems in the many-body potential concept’. The need to develop more accurate models
of interatomic interactions for modelling radiation damage was also highlighted in a recent
review of innovative materials for fusion power plant structures [2].

The fact that the presence of magnetism stabilizes the body-centred cubic (bcc) α-phase
of iron was first noted by Hasegawa and Pettifor [3]. They showed that the entropy term
associated with magnetic fluctuations in the face-centred cubic (fcc) phase was responsible
for the phase transition from the bcc α to the fcc γ phase occurring at approximately 912 ◦C.
The fact that the ferromagnetically ordered bcc phase of iron is more stable than any of the
fcc phases was later confirmed by density functional theory (DFT) calculations carried out
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using the generalized gradient approximation (GGA) [4–6]. A recent tight-binding study [7]
also showed the significance of the magnetic contribution to the energy of interaction between
atoms in α-iron. The fact that magnetism favours certain crystal structures may be interpreted
as a manifestation of the effect of electron correlations on interatomic forces similar to that
found in transition metal oxides using the LSDA + U method [8].

The accuracy of the density functional and tight-binding approaches is sufficient to identify
effects associated with magnetic interactions in iron, but practically it proves impossible to
extend these approaches to systems containing ∼100 000 atoms. Modelling systems of this
size is necessary for understanding effects of long-range elastic interactions responsible for
swelling, embrittlement and creep of materials under irradiation. Hence the development
of phenomenological models suitable for fast evaluation of forces acting between atoms
in a magnetic material is required for carrying out molecular dynamics simulations of
thermally activated processes occurring in iron and iron-based alloys under irradiation. Density
functional calculations have already confirmed the significance of a magnetic contribution to
the energies of self-interstitial defects in iron [9–12], and these results now need to be extended
to much larger systems in order to link simulations with experimental observations of properties
of materials and for the interpretation of electron microscope images of defects.

The currently available semi-empirical atomistic models of ferromagnetic Fe are based
on the many-body formalism [13–16] that was originally developed for the treatment of
interatomic interactions in non-magnetic metals. A notable exception is a recent work by
Ackland [17], who discussed several ways of including magnetic effects in the many-body
potential formalism. In this paper we follow a route that was not considered in [17].

We develop a phenomenological many-body empirical potential model that treats the effect
of magnetism on the energy of interaction between atoms in α-iron. Our approach is based on
a combination of the Stoner and the Ginzburg–Landau models. The first describes correlation
effects giving rise to the occurrence of magnetism in an electron gas and constitutes a relatively
simple model for band magnetism that is able to describe the ground state properties of the
ferromagnetic 3d transition metals [18], while the second represents the simplest model of
a second order phase transition. We show that it is the symmetry broken solutions of the
Ginzburg–Landau model describing spontaneous magnetization of atoms that are responsible
for the link between magnetism and interatomic forces. In agreement with density functional
and tight-binding calculations we find that the occurrence of magnetism in α-iron is closely
related to the shape of the distribution of the density of electronic states. While the rectangular
band model predicts the discontinuous formation of either a non-magnetic or a fully saturated
magnetic configuration, numerical solutions based on the density functional or the tight-binding
densities of states of iron, as well as an analytically solvable generalized parabolic band model,
show that the magnetization curves are well approximated by the Ginzburg–Landau model.
Using this approach, we derive a phenomenological embedding function of the many-body
interatomic potential. By adjusting the effective pairwise density functions and pairwise
interactions we parametrize the energy of interatomic interactions in a form that describes
the equation of state both for the non-magnetic and magnetic configurations, and also the
energies of vacancy and self-interstitial point defects in α-iron.

Our objective here is to make the first step in the development of a ‘magnetic’ interatomic
potential rather than to present a model capable of encompassing all the available information
about the structure and dynamical properties of all the phases of magnetic iron. Our approach
extends the existing treatment of interatomic interactions, where the energy is described by
a single-valued function of atomic coordinates, and links it with the concept of symmetry
breaking, leading to multi-branching of the effective potential. Since in a magnetic system the
energy depends not only on the position of atoms, but also on the configuration of magnetic



A ‘magnetic’ interatomic potential for molecular dynamics simulations 7099

moments, the total energy is no longer given by a unique function of atomic coordinates.
Instead, in a magnetic system we find that several energy surfaces correspond to the same
geometric configuration of atoms. In the case considered below we only treat the ferromagnetic
case where the energy surface consists of two (non-magnetic and ferromagnetic) sheets.
However, at the expense of added complexity, our method can be generalized to the case
of arbitrary magnetic configurations.

2. The band magnetism and the Ginzburg–Landau model

We start by considering the rectangular band model of cohesion in a transition metal. In this
model, the density of single electronic states per atom per spin is given by

D(E) = N/2W, −W/2 < E < W/2, (1)

where W is the width of the band and N = 10 is the total number of d orbitals per atom. The
band energy per atom equals

Etot = E↑ + E↓ − Iζ 2/4, (2)

where E↑ and E↓ are the energies of spin up and spin down sub-bands, ζ = N↑ − N↓ is the
magnetic moment of an atom, and I is the Stoner parameter. The equilibrium value of the
magnetic moment is determined by the condition that the total energy of the system (2) is a
minimum. The energies E↑ and E↓ of the filled majority and minority spin sub-bands are
given by the integrals of the density of states up to the Fermi energies εF↑ and εF↓ of spin up
and spin down electrons [19],

E↑ =
∫ εF↑

−∞
E D(E) dE, E↓ =

∫ εF↓

−∞
E D(E) dE . (3)

Similarly, the band occupation numbers are

N↑ =
∫ εF↑

−∞
D(E) dE, N↓ =

∫ εF↓

−∞
D(E) dE . (4)

Using the rectangular band model, we find

N↑ = N
2W

(
εF↑ +

W

2

)
, N↓ = N

2W

(
εF↓ +

W

2

)
, (5)

and

E↑ = N
4W

(
εF↑ − W

2

)(
εF↑ +

W

2

)
, E↓ = N

4W

(
εF↓ +

W

2

)(
εF↓ − W

2

)
. (6)

The total energy evaluated using the rectangular band model is therefore

Etot = W

N

[(
N↑ − N

2

)
N↑ +

(
N↓ − N

2

)
N↓

]
− I

4
(N↑ − N↓)2. (7)

This energy can also be expressed as a function of magnetic moment ζ and the total number
of electrons N = N↑ + N↓, namely

Etot(N, ζ ) = − W

2N N(N − N) +
1

2

(
W

N − I

2

)
ζ 2. (8)

The requirement that the total energy is a minimum as a function of ζ gives rise to either a non-
magnetic state with N↑ = N↓ for I < 2W/N , or to a fully saturated magnetic configuration
for I > 2W/N . The occurrence of a discontinuous transition between the two limiting cases
has led to the idea proposed in [17] to replace the Stoner term −Iζ 2/4 by a linear term of
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Figure 1. Distribution of the density of band electronic states D(E) of the non-magnetic body-
centred cubic iron. The black curve shows D(E) calculated using the full-potential linearized
muffin-tin orbital (LMTO) approach [38]. The grey curve was calculated using the tight-binding
approximation developed in [7]. The total area under the curves is normalized to N/2 = 5. In
both cases the position of the Fermi energy corresponds to the origin of the energy axis.

the form −E0ζ , where E0 is a phenomenological constant. Further terms linear in magnetic
moment were also introduced to treat the effects of Pauli repulsion.

There are two reasons why terms linear in magnetic moment should not occur in the
expression for the total energy. Firstly, the energy must remain invariant with respect to a
change in the sign of the time variable [20]. Since the magnetic moment changes sign if time
is reversed, the energy must be an even function of ζ . Terms linear in ζ enter the Hamiltonian
only if an external magnetic field is present, in which case T -invariance is retained due to
the fact that if time changes sign the directions of the magnetic moment and the magnetic
field are reversed simultaneously [21]. The second point refers to the origin of the symmetry-
breaking Stoner term −Iζ 2/4. This term comes from the mean-field treatment of the Hubbard
Hamiltonian [22, 23], which is quadratic in the electron occupation numbers and hence gives
rise to a magnetic energy term quadratic in ζ . The Hubbard Hamiltonian describes the effect
of on-site Coulomb repulsion between electrons or, in other words, strong electron–electron
correlations that are also responsible for the ordering of many-body quantum states in a many-
electron atom [24] and for the formation of bandgaps in Mott insulators [25].

We now show that the occurrence of a discontinuous magnetic phase transition in the
rectangular band model noted above is not associated with the electron correlation (Stoner)
term. Instead the nature of this discontinuity is related to the approximate treatment of the
band contribution to the total energy3.

Consider a general expression for the band energy of electrons, assuming that the density
of states D(E) has a form similar to that shown in figure 1, namely

Etot(N, ζ ) =
∫ εF↑

−∞
E D(E) dE +

∫ εF↓

−∞
E D(E) dE − Iζ 2/4. (9)

3 In the case of body-centred cubic iron the rectangular band model does not approximate the actual distribution of
the density of states sufficiently well. However, in other materials like face-centered cubic iron, the rectangular band
model does provide a good approximation and this explains the rapid collapse of magnetic moment occurring under
pressure, see [26].
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This form is subject to the charge neutrality condition [27, 28] asserting that in a metal the
total number of electrons per atom remains constant

N =
∫ εF↑

−∞
D(E) dE +

∫ εF↓

−∞
D(E) dE = constant. (10)

The magnetic moment ζ is given by the difference between the occupation numbers of spin
up and spin down states

ζ =
∫ εF↑

−∞
D(E) dE −

∫ εF↓

−∞
D(E) dE =

∫ εF↑

εF↓
D(E) dE . (11)

Note that in equations (9)–(11) the Fermi energies εF↑ = εF↑(N, ζ ) and εF↓ = εF↓(N, ζ )

themselves are functions of the total number of electrons in the band N and the magnetic
moment ζ . Since the equilibrium value of the magnetic moment is determined by the condition
∂ E/∂ζ = 0, from equations (9)–(11) we find that at equilibrium

εF↑ D(εF↑)
∂εF↑
∂ζ

+ εF↓ D(εF↓)
∂εF↓
∂ζ

− 1

2
Iζ = 0

D(εF↑)
∂εF↑
∂ζ

+ D(εF↓)
∂εF↓
∂ζ

= 0

D(εF↑)
∂εF↑
∂ζ

− D(εF↓)
∂εF↓
∂ζ

= 1.

(12)

By combining these equations we find a condition that relates the Fermi energies of the spin
up and spin down sub-bands to the equilibrium value of the magnetic moment

ζ = εF↑(N, ζ ) − εF↓(N, ζ )

I
. (13)

Using the above definition (11) of ζ , equation (13) can also be represented in the form [29]

I

∫ εF↑
εF↓ D(E) dE[

εF↑(N, ζ ) − εF↓(N, ζ )
] = I 〈D(E)〉 = 1, (14)

where 〈D(E)〉 is the density of states averaged over the interval of energies between εF↓(N, ζ )

and εF↑(N, ζ ).
At a minimum point the second order derivative of the total energy with respect to magnetic

moment ∂2 Etot/∂ζ 2 is positive. Evaluating the second derivative of (9) at the minimum point
of Etot(N, ζ ) we find

1

2

[
1

D(εF↓)
+

1

D(εF↑)

]
− I > 0. (15)

This inequality can also be written in the form D−1(ε) − I > 0, where D−1(ε) ≡ 1/D(ε) is
the average of the inverted non-magnetic density of states per spin between the two energies
corresponding to a band-filling of N↑ and N↓, respectively. Note the difference between this
equation and the Stoner criterion of magnetic instability [1/D(εF)] − I < 0. The Stoner
criterion describes an instability occurring at the point ζ = 0 where the function Etot(ζ ) is at
a maximum. At the same time, condition (15) refers to a stable symmetry-broken magnetic
configuration corresponding to a minimum of the function Etot(N, ζ ) at a point where ζ is a
solution of equations (13) or (14).

The fact that according to equation (13) the Fermi energies of spin up and spin down
electrons are different does not imply the difference between the chemical potentials of spin
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up and spin down electrons. Indeed, the chemical potentials of the majority and minority spin
electrons are given by the derivatives

µ↑ = ∂ E(N, ζ )

∂ N↑
, µ↓ = ∂ E(N, ζ )

∂ N↓
. (16)

Using the definitions N↑ = (N + ζ )/2 and N↓ = (N − ζ )/2, and taking into account that at a
minimum ∂ E/∂ζ = 0, we write

∂ E(N, ζ )

∂ N↑
= ∂ E

∂ N

∂ N

∂ N↑
+

∂ E

∂ζ

∂ζ

∂ N↑
= ∂ E

∂ N
+

∂ E

∂ζ
= ∂ E

∂ N
,

∂ E(N, ζ )

∂ N↓
= ∂ E

∂ N

∂ N

∂ N↓
+

∂ E

∂ζ

∂ζ

∂ N↑
= ∂ E

∂ N
− ∂ E

∂ζ
= ∂ E

∂ N
.

(17)

These equations show that

µ↑ = ∂ E(N, ζ )

∂ N↑
= ∂ E(N, ζ )

∂ N
= ∂ E(N, ζ )

∂ N↓
= µ↓. (18)

To find the actual value of the chemical potential of electrons we differentiate equations (9)–
(11) with respect to N . Noting that N and ζ are independent variables, we write

εF↑ D(εF↑)
∂εF↑
∂ N

+ εF↓ D(εF↓)
∂εF↓
∂ N

= µ

D(εF↑)
∂εF↑
∂ N

+ D(εF↓)
∂εF↓
∂ N

= 1

D(εF↑)
∂εF↑
∂ N

− D(εF↓)
∂εF↓
∂ N

= 0.

(19)

Using these equations, we find the chemical potential

µ = ∂ E(N, ζ )

∂ N
= (εF↑ + εF↓)/2, (20)

which has the same value for spin up and spin down electrons.
We now investigate how the magnetic part Etot(N, ζ ) − Etot(N, 0) of the total energy (9)

varies as a function of magnetic moment ζ . Using the densities of states shown in figure 1
and solving equations (9)–(11) numerically, we find that the function Etot(N, ζ ) − Etot(N, 0)

follows the curves shown by the dark solid lines in figure 2. We see that the total energy is an
even function of magnetic moment ζ and it has two symmetrical minima at ζ ≈ ±2.26 µB.
While the equilibrium value of the magnetic moment depends on the magnitude of the Stoner
parameter I , the two-well structure of the curve Etot(N, ζ )− Etot(N, 0) represents an inherent
property of the model. The presence of two minima in figure 2 is significant since they reflect
the fact that in a ferromagnet the choice of the direction of magnetization is arbitrary and
that the energy of a magnetic state is independent of whether the moment is pointing ‘up’ or
‘down’.

The characteristic double-well shape of the curves shown in figure 2, as well as the fact
that these curves describe the occurrence of spontaneous magnetization or, in other words, a
magnetic phase transition, suggests that it might be possible to approximate the behaviour of the
total energy treated as a function of ζ by means of a simple phenomenological parametrization
of the function Etot(N, ζ ). The simplest model of a second-order phase transition is the
Ginzburg–Landau model [30], where the magnetic part of the total energy is represented by a
sum of a second-order and a positive fourth-order term

Etot(N, ζ ) − Etot(N, 0) = αζ 2 + βζ 4. (21)
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Figure 2. The magnetic part of the total energy Etot(ζ ) calculated numerically using equations (9)–
(11) and plotted as a function of magnetic moment ζ . Calculations based on the LMTO density of
states were performed assuming that I = 0.78 eV and N = 6.57. The coefficients α and β of the
Ginzburg–Landau model Etot(ζ ) = αζ 2 + βζ 4 shown by the grey line are α = −9.55 × 10−2 eV
and β = 1.06 × 10−2 eV. Calculations based on the tight-binding density of states were performed
assuming that I = 0.66 eV and N = 6.76. The coefficients α and β of the Ginzburg–Landau
model fitted to the tight-binding solution are α = −8.22 × 10−2 eV and β = 7.78 × 10−3 eV.
The fact that in both cases we find that coefficient α is negative confirms that the non-magnetic
configuration of bcc iron is unstable. This instability gives rise to the formation of a symmetry
broken magnetic configuration with ζ ≈ ±2.26 µB.

How well are the solutions of equations (9)–(11) approximated by this model? To answer this
question, in figure 2 we plotted curves αζ 2 + βζ 4 where coefficients α and β were chosen to
provide the best fit to the exact numerical solutions of equations (9)–(11). Figure 2 shows that
both the characteristic double-well structure of the curves and their numerical values agree well
with the numerical solutions of equations (9)–(11). This suggests that the Ginzburg–Landau
model, which is a simple analytically solvable model of a magnetic phase transition, provides
an accurate approximation to the dependence of the total energy of a system of interacting
magnetic atoms on their local environment even if the density of states D(E) characterizing
the electronic structure of the material exhibits the fairly complex behaviour illustrated in
figure 1. Since the Ginzburg–Landau model provides an explicit expression for the magnetic
contribution to the total energy, namely

Etot(N, ζ )|min − Etot(N, 0) = − α2

4β
, (22)

where we assumed that α < 0, the problem of finding the magnetic part of the many-body
‘interaction potential’ is reduced to determining how coefficients α and β depend on the local
environment of a given atom. The fact that the Ginzburg–Landau model agrees well with
the numerical solution of equations (9)–(11) shows that the universal form (21) may prove
useful in evaluating the magnetic part of the total energy even within the framework of a fairly
complex model of interatomic interactions (for example, a model based on the fourth-order
recursion expansion [29]).

While this opens an interesting line of future work, in this paper we concentrate on the
development of the simplest possible model of interatomic interaction suitable for carrying out
molecular dynamics simulations of a magnetic material. In the following section we consider
an analytically solvable generalized parabolic model of the density of states. This model on
the one hand illustrates the formalism based on equations (9)–(11) and on the other hand makes
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it possible to construct a working semi-empirical potential suitable for large-scale molecular
dynamics simulations of a system of interacting magnetic atoms.

3. The semi-empirical magnetic potential

In the preceding section we showed that the requirement that the total energy Etot(N, ζ ) must
be an even function of magnetic moment is equivalent to the requirement that the Hamiltonian
of the system is T -invariant. The Ginzburg–Landau model (21) containing both the second-
and the fourth-order terms satisfies the T -invariance principle. At the same time, the fact that
the Stoner term is quadratic in ζ and that the magnetic part of the band energy calculated using
the rectangular band model (8) is also quadratic in ζ shows that in the rectangular band model
we have no means for introducing the fourth-order term. While in principle this term can still
be introduced phenomenologically, this would leave open the question about its dependence
on the local environment of a magnetic atom.

The analysis given in the preceding section shows that the presence of the fourth-order
term in the Ginzburg–Landau expansion of magnetic energy is related to the heterogeneity of
the shape of the density of states D(E). Hence, in order to describe the symmetry-breaking
magnetic phase transition it is necessary to extend the treatment based on equations (9)–(11)
beyond the rectangular band model.

In the spirit of the Finnis definition [14] of the quality parameter of a model as the ratio
of its predictive power to its complexity, we look for the simplest model of the density of
states exhibiting a magnetic phase transition and investigate the generalized parabolic band
case, which we then link to the treatment of magnetism based on equations (9)–(11) and the
Ginzburg–Landau model. By following this approach, we derive an approximate expression
for the embedding function of the magnetic many-body potential model,and study its behaviour
over a range of effective electron densities. We then investigate how well the model fits the
equilibrium parameters of α-iron, as well as the energies and structures of several fundamental
point defect configurations. We find that in order to formulate a working scheme suitable for
molecular dynamics simulations it is necessary to ensure that not only the effective embedding
functional itself, but also its first and its second derivatives are adjusted appropriately in a way
consistent with experimental and ab initio data.

We assume that the density of states D(E) has a scalable form

D(E) = 1

W
F

(
E

W

)
, (23)

where W is a scaling parameter that has the meaning of the width of the d band. Function (23)
is normalized by the condition

2
∫ ∞

−∞
dE D(E) = N , (24)

where N = 10 is the total number of d orbitals per atom. It is evident that the value
of integral (24) is independent of the width of the band W . To show this we introduce a
dimensionless variable of integration X = E/W and write

2
∫ ∞

−∞
dE D(E) = 2

∫ ∞

−∞
dE

W
F

(
E

W

)
= 2

∫ ∞

−∞
dX F(X) = constant. (25)

In a non-magnetic state the probabilities of populating the spin-up and spin-down states
are the same. If we choose the origin of the energy axis at the Fermi energy of the non-magnetic
state we find that the total number of electrons occupying the band equals

N = 2
∫ 0

−∞
dE D(E). (26)
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Applying the scaling argument (23) to equation (26) we see that the number of electrons per
atom N remains independent of W , as required by the local charge neutrality condition [27, 28].

We now assume that near the origin (or, equivalently, in the vicinity of the Fermi energy
of the non-magnetic state) the density of states D(E) is approximated by a sum

D(E) = 1

W
F

(
E

W

)
= 1

W

[
a − b

(
E

W

)2]
+

1

W
R

(
E

W

)
, (27)

of a parabolic term and a regular part, where a > 0 and b > 0 are constant factors independent
of W , and |R(0)| 
 a. The function R(E/W ) in equation (27) is chosen in such a way that
the representation (27) is exact. Formula (27) is valid within the interval of energies where
|E | < W

√
a/b.

Consider now a symmetry-broken magnetic state where the populations of spin-up and
spin-down states are no longer equal. Since the parabolic term in (27) gives the leading
contribution to the density of states near the Fermi energy of the non-magnetic state, in
the ferromagnetic state the Fermi energies of spin-up and spin-down states are shifted
symmetrically up and down the energy axis εF↑ = � and εF↓ = −�. Using equations (26)
and (27) we find that

N↑ =
∫ εF↑

−∞
dE

W
F

(
E

W

)
≈ N

2
+

∫ �

0

dE

W

[
a − b

(
E

W

)2]
= N

2
+ a

(
�

W

)
− b

3

(
�

W

)3

,

N↓ =
∫ εF↓

−∞
dE

W
F

(
E

W

)
≈ N

2
+

∫ −�

0

dE

W

[
a − b

(
E

W

)2]
= N

2
− a

(
�

W

)
+

b

3

(
�

W

)3

.

(28)

These equations show that

N = N↑ + N↓ = constant,

ζ = N↑ − N↓ = 2

(
�

W

)[
a − b

3

(
�

W

)2]
.

(29)

Similarly, we find the band part of the total energy

Eband ≈
∫ 0

−∞
dE

W
E F

(
E

W

)
+

∫ �

0

dE

W
E

[
a − b

(
E
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+

∫ −�

0
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(
E
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)2]

= − constant · W + aW

(
�

W

)2

− b

2
W

(
�

W

)4

, (30)

where the constant factor in the first term is positive and arises from contributions from both
the parabolic and the regular part of D(E). To take into account the electron correlation effects
responsible for the ferromagnetic instability we add the Stoner term to (30) and arrive at

Etot = −constant · W + a

(
�

W

)2

(W − Ia) +
b

2

(
�

W

)4(4

3
Ia − W

)
+ · · · . (31)

We note that everywhere in the region of the Stoner instability, where I > W/a, the fourth-order
term in equation (31) is positive and hence (31) agrees with the phenomenological Ginzburg–
Landau model (21). The fact that the variable in expansion (31) is not the magnetic moment
ζ but the Fermi energy shift � is of no significance here since, according to equation (29), �

is a unique function of ζ . The minimization of function Etot(�) is therefore equivalent to the
minimization of Etot(ζ ).

Application of the Stoner criterion of magnetic instability to the parabolic band model (31)
gives I > W/a. If the Stoner criterion is satisfied then the fourth-order term in (31) is
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positive and Etot, treated as a function of �, has the double-well structure shown in figure 2.
Function (31) is minimum at the point

(
�

W

)2

= a

b

(Ia − W )

( 4Ia
3 − W )

, (32)

where the total energy is equal to

Etot|min = −constant · W − a2

2b

(Ia − W )2

( 4Ia
3 − W )

�(Ia − W ). (33)

Here �(x) is the Heaviside function, �(x) = 1 for x > 0 and �(x) = 0 for x < 0.
Formula (33) shows that spontaneous symmetry breaking driven by the Stoner magnetic

instability occurring for I > W/a reduces the energy of the system by the amount given by the
second term in (33). The stable magnetic configuration has lower energy than the (unstable)
non-magnetic state, the energy of which is given by the first term in (33). Due to the presence
of the Heaviside function in equation (33) the magnetic part of the total energy vanishes in the
limit where the band width W is large, i.e. in the limit where the material is compressed.

Using equation (33) and following the argument based on the Finnis–Sinclair
model [13, 14], where the bandwidth W is assumed to be proportional to an effective pairwise
density function ρ, we arrive at an empirical embedding functional describing both the magnetic
and the non-magnetic states of the material,

F[ρ] = −A
√

ρ − B

(√
ρc − √

ρ
)2

(
υ +

√
ρc − √

ρ
)� (ρc − ρ) . (34)

Here A and B are constant factors, ρc is a critical value of effective density at which magnetism
vanishes, and υ is a small positive constant. In what follows we investigate and improve this
functional, and apply it to model strongly distorted atomic configurations in the vicinity of
interstitial defects in α-iron.

Summarizing the results of this section, we see that effects of ferromagnetism can be
described by adding a new term to the potential of a system of non-magnetic interacting
atoms. This conclusion comes naturally from the treatment based on the Ginzburg–Landau
model where the energy of a symmetry-broken configuration is lower than the energy of a
higher-symmetry configuration used as a reference. In our case the reference non-magnetic
configuration is described by the Finnis–Sinclair potential model, and the second term in (34)
is the energy gained due to the formation of a symmetry-broken ferromagnetic configuration.

4. Parametrization and numerical examples

The embedding functional (34) is a sum of two terms. The first term is proportional to the square
root of the effective pairwise density function, ρ, and is therefore conceptually equivalent to
the embedding functional of the Finnis–Sinclair model [13]. The second term describes effects
of magnetism, and it vanishes quadratically as the density ρ approaches the critical value ρc.
It is significant that both the embedding functional and its first derivative are continuous at the
critical point ρ = ρc, since functional (34) describes a second-order phase transition where the
energy and all of its first derivatives have to remain continuous [30] at the point of transition.

The dependence of functional F[ρ] on density is illustrated in figure 3. For large values
of ρc − ρ � υ the functional is linear in ρc − ρ, namely

F[ρ] ≈ −A
√

ρ − B
(√

ρc − √
ρ
)
� (ρc − ρ) . (35)
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Figure 3. This figure shows the two effective embedding functionals (34) (functional 1) and (37)
(functional 2), as well as their first and second derivatives, plotted as functions of the scaled density
ρ/ρc. Note the strong discontinuity of the second derivative of functional 2 at the magnetic phase
transition point ρ/ρc = 1. Curves shown in this figure were calculated assuming that B = 0.3 and
υ = 0.05.

For small values of ρc − ρ 
 υ it is of the second order in ρ − ρc, in agreement with the
Ginzburg–Landau approximation (22),

F[ρ] ≈ −A
√

ρ − B

υ

(√
ρc − √

ρ
)2

� (ρc − ρ) . (36)

While the functional behaviour of F[ρ] in the two limiting cases (35) and (36) is qualitatively
correct, the second derivative of (34) has a cusp near the point ρ ≈ ρc. This cusp is visible
in figure 3, and it is due to the small value of υ in the denominator of (34). To improve the
behaviour of the second derivative while retaining the general properties of the F[ρ] and its
first derivative at ρ ≈ ρc we replace (34) with

F[ρ] = −A
√

ρ − B

ln 2

(
1 −

√
ρ

ρc

)
ln

(
2 − ρ

ρc

)
� (ρc − ρ) . (37)

This functional and its first derivative are continuous at ρ = ρc while the second derivative
of (37) no longer has a cusp near the critical point. Figure 3 illustrates the difference in the
behaviour of derivatives of functionals (34) and (37) as functions of the effective density ρ.
Functional (37), as well as equation (33), both have an important property that we expect
from a magnetic embedding functional, namely, the occurrence of a symmetry breaking phase
transition at ρ = ρc. In the high density limit ρ > ρc only the non-magnetic solution is stable,
while in the low density limit ρ < ρc the functional splits into two branches, a magnetic one
given by (37) and a non-magnetic one given by the same formula (37) where B = 0. The
numerical study described below is based on the functional form of the embedding term given
by (37).

With (37) we now have a physically justifiable description for the magnetic band energy
and, with the addition of a pairwise repulsive potential term, V (r), a fully empirical model
that can be used to perform molecular dynamics of a multi-million atom configuration with the
same efficiency as that of previous non-magnetic empirical models for iron. The total energy
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of such an N-atom system is given by

Etot =
N∑
i

F[ρi ] + 1
2

N∑
i j,i = j

V (ri j ), (38)

where

ρi = ρc

∑
j,i = j

f (ri j). (39)

Here f (r) is the so-called pairwise density radial function that, in the context of the second-
moment description [14], represents the magnitude squared of the (two-centre) hopping integral
between atoms separated by a distance r . Thus, through appropriate forms of f (r) and V (r),
and values of A and B in (37), the inter-atomic model becomes fully defined.

Via the embedded atom method (EAM) [31], ρc f (ri j) may be viewed as the electronic
density at i due to atom j , where F[ρi ] is termed the embedding energy of atom i . Unlike
the square root band term in the second moment representation, the functional form of the
embedding function within the EAM formalism is a free parameter of the model and moreover
cannot be uniquely defined since the total energy is invariant with respect to the transformation:

F[ρi ] → F[ρi ] + κρi (40)

V (ri j) → V (ri j ) − 2κρc f (ri j). (41)

Here κ is a constant that determines the first derivative of the embedding energy at (say) the
equilibrium lattice constant. The present magnetic model assumes a multi-valued band energy
term but not a multi-valued pairwise repulsive term, and hence the inherent arbitrariness of the
embedding energy functional within the EAM formalism is not present since the transformation
contained in equations (40) and (41) would effectively introduce a non-physical multi-valued
repulsive potential term.

Two important features of the functional forms are that f (r) must always be positive, and
both f (r) and V (r) must be relatively short range. Indeed, efficient electronic screening and
effective renormalization of the relevant hopping integrals dictate that the repulsive potential
and pairwise density radial functions should not extend far beyond the bcc second nearest
neighbour and fcc first nearest neighbour shells. With these issues in mind we choose a
summation of cubic knot functions to represent both f (r) and V (r):

f (r) =
N f∑

n=1

fn(r − r f
n )3�(r − r f

n ) (42)

V (r) =
N V∑
n=1

Vn(r − r V
n )3�(r − r V

n ), (43)

where the knot coefficients fn and Vn, and the knot points r f
n and r V

n are to be determined. This
functional form has the advantage of being flexible with no initial assumption of overall shape,
being continuous up to the second derivative, and already having a smooth cut-off with the
introduction of the first knot function. Moreover, additional shorter range knot functions can
be added without affecting the functional form at larger radial distances. Such a representation
has been used in previous non-magnetic empirical models of iron [15, 16].

For the present work, the database of material properties used to obtain a physically
viable fit consists of the bulk cohesive energy, lattice constant and combinations of the elastic
stiffness constants of both the bcc and fcc, magnetic and non-magnetic, phases. In addition,
the un-relaxed vacancy formation energy and relaxed 〈100〉, 〈110〉 and 〈111〉 interstitial
dumbbell energies are included. The interstitial energies are obtained by relaxing geometrically
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Table 1. Converged values of bulk properties of magnetic and non-magnetic fcc and bcc structures
for case studies I and II and in parenthesis the corresponding database values. For the ‘pressure’
row, the converged pressure for the lattice constant shown in parenthesis is given. For the ‘cohesive
energy’ row the higher energy phases are given relative to the bcc equilibrium cohesive energy.
Converged values shown in italics were not included in the objective function.

FM bcca NM bccb FM fccb NM fccb

Case study I

E0 (eV) −4.3160 (−4.3160) 0.4457 (0.4762) 0.1863 (0.1361) 0.4742 (0.1565)
Pressure (GPa) (l0 (Å)) 0.0 (2.866) −0.0324 (2.7727) 0.0426 (3.4934) −0.0732 (3.4608)
B (GPa) 173.1 (173.1) 227.5 (276) 112.3 (182) 192.4 (317)
C44 (GPa) 121.9 (121.9) 188.4 (141) 154.2 (23) 186.5 (287)
C ′ (GPa) 52.5 (52.5) −33.7 (−110) −83.5 (−77) −48.4030 (125)

Case study II

E0 (eV) −4.3160 (−4.3160) 0.1930 (0.4762) 0.1355 (0.1361) 0.2216 (0.1565)
Pressure (GPa) (l0 (Å)) 0.0 (2.866) −0.0143 (2.7727) 0.0426 (3.4934) 0.0529 (3.4608)
B (GPa) 173.1 (173.1) 249.2 (276) 197.8 (182) 305.4 (317)
C44 (GPa) 121.9 (121.9) 172.1 (141) 151.6 (23) 179.9 (287)
C ′ (GPa) 52.5 (52.5) −21.0 (−110) 56.2(−77) 49.3223 (125)

a Database values taken from [15].
b Database cohesive energy and lattice constant taken from figure 2 of [6], and elastic stiffness constants taken
from [32].

Table 2. Unrelaxed vacancy and relaxed interstitial energies produced by ab initio calculations
and converged values for case studies I and II. In the case of the vacancy energy, the values within
parenthesis are for the relaxed structures. Model values in italics were not included in the objective
function.

Ab initioa Case study I Case study II

Evac (eV) −(2.07) 2.25 (2.18) 2.07 (1.97)
E〈100〉 (eV) 4.64 4.28 4.60
E〈111〉 (eV) 4.34 4.01 4.24
E〈110〉 (eV) 3.64 4.11 3.65

a Reference [11]. In the present work the relaxed ab initio value was taken as the database value
for the un-relaxed vacancy formation energy.

constructed dumbbell configurations using a conjugate-gradient procedure. In practice, 433-
atom interstitial configurations were used rather than the 129-atom systems of Fu et al [11]
from which the database interstitial energies are taken. Such relaxations must be performed
for each candidate parameter set. Finally, the bcc/fcc transition point in terms of volume per
atom is included. Inspection of the ab initio [6] and tight-binding [7] equation-of-state (EOS)
curves reveal that in the region where the magnetic fcc phase becomes more stable there is a
significant reduction of the fcc magnetic moment reflecting an increase in the local density and
a corresponding ‘switching off’ of the magnetic interaction. This feature was also included in
the materials database by adding a term in the objective function that approached zero if the
fcc local electronic density approached the critical density at the bcc/fcc transition point.

Tables 1 and 2 list the numerical values for the material properties and their corresponding
sources. We note that many of the physical quantities in these tables are obtained from a
number of different ab initio calculations of varying accuracy and that the energies, lattice
constants and elastic stiffness constants of the higher energy phases enter the final objective
function only with minimal weights. In the actual fitting a complex and changing choice of
weights was used to obtain optimal parameter sets, with the associated strategy developed by
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real-time computational steering of the fitting procedure to gain insight into the non-linear
behaviour of the changing objective function.

If the objective function contains data derived from the relaxation of the interstitial
configurations, derivative information is not available with respect to all of the fitting parameters
and therefore a combination of simulated annealing [33] and a non-linear downhill simplex
algorithm [34], both of which do not employ derivative information, are used to minimize the
objective function. Both of these techniques are controlled by a master algorithm that can (1)
reject outright a candidate solution and (2) identify a local minimum and an associated exit
path. The first property was found to be more efficient than adding additional penalty terms
to the objective function, and the second property was found to be absolutely essential for the
computationally intensive task of finding the necessary optimal solution in a objective function
landscape rich in local minima. In addition to the above procedures, the embedding energy
coefficients (A and B) and the outermost three knot coefficients of the repulsive potential could
be solved for exactly through a linear matrix solution to correctly reproduce the bcc magnetic
cohesive energy, lattice constant and elastic stiffness constants. Thus the numerical part of the
fitting procedure involved searching for the optimal knot coefficients fn (for all n) and Vn (for
n > 3). The knot points are chosen initially and kept constant throughout the optimization.

In what follows we consider two case study fits that demonstrate the power of the current
empirical magnetic model. In case study I we present a fit that only includes the bulk bcc and
fcc properties and the unrelaxed vacancy formation energy, whilst in case study II we present
a fit that is optimized to reproduce the correct relaxed interstitial energies to an accuracy of
less than 0.1 eV. In both fits a minimal number of knot functions are used: six for the pairwise
repulsive potential and only four for the pairwise density term. In case study II, two additional
short range knot functions are used in both radial functions to refine the interstitial energies.
Whilst not always producing the smallest value of the objective function, such a minimal choice
will ensure optimal smoothness in the radial functions.

4.1. Case study I

In case study I, the bulk magnetic bcc properties (cohesive energy, lattice constant and elastic
stiffness constants), the vacancy formation energy and the isotropic bulk properties (cohesive
energy, lattice constant and bulk modulus) of the non-magnetic bcc phase and magnetic and
non-magnetic fcc phases are fitted. In particular, the bcc/fcc transition point is included with
a significant weight. Table 1 lists the material parameters for the optimal parameter set shown
in table 3, and we see that reasonable agreement is obtained for the higher energy phases.
This can be better seen in figure 4(a), in which the resulting equation of state (EOS) curves
are displayed for the four phases. Comparison of this figure with the ab initio EOS curves
of Herper et al [6] demonstrates that apart from the non-magnetic fcc phase, good qualitative
agreement exists with the magnetic bcc/fcc transition point being well reproduced—although
ρfcc approaching ρc in the fcc/bcc transition region could not be achieved, reflecting the too
high non-magnetic fcc EOS curve. Despite the non-magnetic fcc EOS curve being too high,
the magnetic energy contribution to the magnetic fcc cohesive energy remains smaller than
in the bcc case. Thus the model displays the important physical property that the magnetic
fcc structure has a higher energy than the corresponding bcc structure because the magnetic
contribution to the energy of the former is less. This is further reflected in figure 4(b), which
displays the resulting bcc and fcc local electronic densities as a function of volume per atom,
where we see that the bcc local electronic density is less than the corresponding fcc value.
The origin of the correct ordering of the local electronic density can be seen in figure 4(c),
where the pairwise density radial function is shown. As expected, it is short range, with the
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Figure 4. Plot of (a) equation of state curves, (b) scaled local electronic density and (c) pairwise
density and repulsive potential radial functions of case study I.

Table 3. Optimal parameter set for case studies I and II.

Case study I Case study II

A 3.527 586 256 672 234 4.100 199 340 884 814
B 1.642 855 167 616 477 1.565 647 547 483 517

r f
n fn

3.0 0.505 568 175 375 7052 0.933 205 668 108 8162
2.86̇ −0.425 555 283 113 6833 −1.162 558 782 567 700
2.73̇ −0.562 940 810 933 9820 −0.350 202 694 924 9225
2.6 0.431 853 088 566 5762 0.428 782 083 543 0028
2.4 — 4.907 925 057 809 273
2.3 — −5.307 049 068 415 304

r f
n Vn

4.1 1.753 386 111 560 4772 × 10−3 −0.196 067 438 741 9232
3.8 −0.932 121 957 205 9338 0.368 752 593 542 2963
3.5 1.696 463 955 030 590 −1.505 333 614 924 853
3.2 0.663 847 872 510 9788 4.948 907 078 156 191
2.9 −1.914 559 267 568 704 −4.894 613 262 753 399
2.6 3.193 687 184 255 540 3.468 897 724 782 442
2.4 — −1.792 218 099 820 337
2.3 — 80.220 695 922 469 87

dominant contribution for the bcc structure being at the bcc first nearest neighbour distance,
with the radial function dropping to ∼96% at the second nearest neighbour distance. Thus the
bcc electronic density is constructed mainly from its eight first nearest neighbours, giving a
density value that is less than that obtained from the 12 more distant first nearest neighbours
of the fcc structure.

Table 2 lists the optimized un-relaxed vacancy formation energy and the predicted constant
volume relaxation energy calculated by relaxing a 431-atom single-vacancy configuration at
fixed bulk equilibrium volume,along with an ab initio value derived from a 54−1 atom cell that
did involve volume relaxation. We note that there exists a spread of ab initio derived relaxed
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Figure 5. Plot of (a) equation of state curves, (b) scaled local electronic density and (c) pairwise
density and repulsive potential radial functions of case study II.

vacancy formation energies and the accepted experimental value is 2 ± 0.2 eV (see [11] and
references therein). Figure 6(a) displays the predicted vacancy migration barrier calculated by
relaxing all forces normal to the reaction coordinate path as a function of the migrating atom’s
position. A plateau structure is evident at a barrier height of approximately 0.85 eV. Such a
feature is also seen in a recent ab initio calculation [12]; however, in previous non-magnetic
empirical models a double-bump structure is produced [16]. The barrier height itself is similar
in value to that of the non-magnetic empirical model of Ackland et al [15] and 0.18 eV higher
than that derived from ab initio [11].

Table 2 also lists the predicted interstitial energies and we see that the energy range is
of the correct order of magnitude, but the ordering is incorrect. Refining the fit, by including
the interstitial energies in the objective function without compromising the EOS curves in
figure 4(a), improved somewhat the situation, with the 〈100〉 energy approaching the ab initio
database value. However, the correct ordering of the 〈110〉 and 〈111〉 energies could not be
achieved, where at best the 〈110〉 and 〈111〉 energies became nearly degenerate. The addition
of two more knot functions at 2.4 and 2.3 Å to both f (r) and V (r) did not help.

4.2. Case study II

In case study II the bulk equilibrium properties, vacancy formation energy and interstitial
energies were fitted. As in case study I the isotropic bulk equilibrium properties of the non-
magnetic bcc phase, and the magnetic and non-magnetic phases were also included in the
objective function. The initial stage of this fit used the same knot function representation as
in case study I and involved increasing (during the fitting) the weights for the interstitials.
This implicitly compromised the magnetic bcc/fcc transition point but resulted in the correct
ordering of the interstitial energies. To achieve the required accuracy of less than 0.1 eV two
inner knot functions were added to both the pairwise density and repulsive potential functions.
Tables 1 and 2 display the physical properties of the optimal parameter set, which is shown in
table 3.

Figure 5(a) displays the resulting EOS curves and we see that the bcc/fcc transition point
is not at all reproduced; indeed, the energies as functions of high compression differ greatly
from that of case study I and the predictions of the ab initio EOS curves. Despite this, once
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Figure 6. (a) Vacancy migration energy curves for case studies I and II. (b) 〈110〉 self-interstitial
migration energy curve for case study II.

again the magnetic energy contribution of the fcc structure is less than that of the bcc structure.
Moreover, in figure 5(b) we see that the bcc density has the required (equilibrium) property
that it is less than the corresponding fcc electronic density. Figure 5(c) displays the pairwise
density and repulsive potential radial functions and we see that both are smooth functions
of distance, containing no additional anomalous non-monotonic structure. Inspection of the
pairwise density radial function shows that it has a similar form to that of case study I for
equilibrium bcc and fcc lattice inter-atomic distances, with a change in slope at distances less
than 2.4 Å due to the additional inner knot functions. The pairwise repulsive potential is also
quantitatively similar to that of case study I; however, it is somewhat more extended at the
larger inter-atomic distance range and, although not evident in the graph, the region at less
than 2.4 Å differs greatly (see knot coefficients in table 3).

The predicted constant volume vacancy relaxation energy is listed in table 2 and found
to be similar to that of case study I; however, inspection of the associated migration energy
curve (see figure 6(a)) now reveals a double-bump structure and not the plateau structure seen
in case study I. The corresponding migration barrier height of 0.84 eV is similar to that of case
study I. Despite the difference in the barrier region structure, case studies I and II do give the
same vacancy energy characteristics, reflecting that both fits exhibit similar equilibrium bulk
bcc properties.

Figure 6(b) displays the migration energy path of the 〈110〉 interstitial defect calculated
using the nudged-elastic-band method [35], and we see that the barrier region exhibits a
double-bump structure. Investigation of this region however reveals alternative minimum
energy paths, some of which exhibit a plateau or single-bump structure—with all having
very similar maximum migration energies. These alternative paths can be found by varying
the spring constants and also the number of replica points within the nudged-elastic-band
procedure, indicating a rich and non-trivial energy landscape, albeit at an energy scale of
∼0.01 eV. We therefore leave it as an open question (through the inclusion of error bars in
figure 6(b)) whether or not the true minimum energy path is a single-bump barrier for the
present potential as was found in the case of ab initio calculations [12]. The corresponding
barrier height is 0.32 eV, which is in excellent agreement with the ab initio result [12] of
0.34 eV. Investigation of the associated reaction coordinate path indicates that the migrating
〈110〉 dumbbell executes a roughly rotational motion around a [111] direction to avoid the
higher energy 〈111〉 configuration.
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5. Discussion

An important difference between the presented case studies is that in case study II the local
electronic densities are larger in value and therefore approach more rapidly the critical scaled
density (ρc = 1) at which magnetism is turned off. Indeed, this is the origin of why case
study II has lower energy EOS curves for the non-magnetic phases when compared to those
of case study I. In case study I the typical electronic densities are at values for which the
magnetic embedding energy exhibits linear behaviour, whereas in case study II the electronic
density values are in the range where the embedding energy can become more quadratic-like
(especially close to ρ = ρc), giving the fit the ability to reduce the magnetic contribution to
the energy more rapidly as a function of increasing electronic density. It is for this reason that
case study II can correctly reproduce the dumbbell interstitial energies, correlating well to the
ab initio [10] and tight binding [7] result, that at and around the interstitial there is a reduction
in the magnetic moment and thus a reduction in the contribution of magnetism to the defect
energies.

That the magnetic contribution plays a vital role in obtaining the correct interstitial energies
can be further illustrated by inspection of the ab initio non-magnetic interstitial energies derived
from the converged (magnetic) interstitial positions of Fu et al [11]. Using the (128 + 1)-atom
〈100〉, 〈111〉 and 〈110〉 configurations these are 2.29, 0.91 and 1.01 eV respectively, and for
the (54 + 1)-atom 〈111〉 and 〈110〉 configurations these are 1.47 and 1.08 eV respectively4.
Although there is a variance in these preliminary ab initio results, we see that a significant
part of the total energy of each of the defects arises from magnetism. In fact, across the three
interstitial energies there are significant differences in the magnetic contribution, which is in
agreement with the trend of the magnetic moment signatures [7, 10], and is also responsible
for the anomalous ordering in iron of the 〈111〉 and 〈110〉 interstitial energies when compared
to other group VI materials. Case study II predicts non-magnetic interstitial energies of 2.05,
1.63 and 1.21 eV, which are qualitatively similar to the ab initio results in terms of range
and difference—a remarkable result given that only the trend of the non-magnetic bcc elastic
constants is reproduced (see table 1). On the other hand, case study I gives as its non-magnetic
interstitial energies 2.17, 1.86 and 1.95 eV, the spread of which is much smaller, reflecting the
lower local electronic density values contained in figure 4(b).

The presented case studies reveal that the correct ordering of the interstitial energies could
only be achieved through the appropriate magnetic contribution to the bulk cohesive energy and
its associated volume dependence, and that the use of short range knot functions could only help
in the fine tuning of the final defect energies. Thus the region surrounding the interstitial core,
loosely defined as the two atoms constituting the original geometrical dumbbell, plays a vital
role in these energies. Ab initio [10] and tight-binding [7] calculations reflect this in distinctly
different perturbed moment fields around the cores of the three interstitials demonstrating
the importance of the linear and non-linear magneto-elastic field energy contribution. Such
moment fields can be investigated within the present empirical model since each atom carries
with it a moment that is determined by some function of 1−√

ρ/ρc, where ρ is the atom’s local
electronic density. The form of this function will not be considered in the present work. We
note however that the ability of the present empirical model to predict moment distributions
of interstitials, more complex defect structures such as extended dislocation structures, as
well as artificially grown magnetic nanostructures consisting of millions of atoms, opens up
a new and exciting direction for the empirical modelling of α-iron and iron-based magnetic
alloys.

4 For the (128 + 1)-atom non-magnetic calculation, VASP V4.6 was used with a 2 × 2 × 2k-point mesh; see Nguyen-
Manh [36]. For the (54 + 1)-atom case, SIESTA was used with a 3 × 3 × 3k-point mesh, see Fu and Willaime [36].
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That the bcc/fcc transition point cannot be reproduced, even qualitatively, whilst at the
same time maintaining the correct interstitial ordering is not surprising since the fcc electronic
DOS differs in shape from the bcc electronic DOS shown in figure 1—a feature that a second
moment description of the DOS cannot achieve if the physically justified short range nature
of the radial functions is to be retained. Case study I achieves this somewhat fortuitously and
is probably a result of the added flexibility of the magnetic energy functional. Such structural
energetics can (and should be) achieved by going to a higher moment description of the DOS
that allows the modelling of the environmental dependence of the bi-modal and/or asymmetric
aspects of the DOS. Moreover, the inability of the present second moment description to
capture the differences between the bcc and fcc DOSs is also seen in the model’s inability to
capture the related fcc properties of a significantly more rapid moment reduction as a function
of compression (see figure 2 in [6]) and a much smaller magnetic energy contribution to the
bulk cohesive energy. This can be understood in terms of the Ginzburg–Landau description
contained in figure 2 and (21), since both α and β will also depend on the general shape of the
fcc DOS.

Finally, we remind the reader that the present optimal fit (case study II) contained in table 3
is not suitable for primary damage state cascade evolution simulation. Following the approach
of [15], the appendix includes the high energy (short range) corrections necessary to begin
performing such simulations. As with all previous empirical potentials that employ such a
short range correction, this type of modification may not correctly describe, in a quantitative
sense, the intermediate threshold kinetic energy regime (the minimum kinetic energy need to
displace an atom). More generally we caution the reader that the current fit is in its infancy
and will no doubt undergo future development through validation and further refinement via
the expansion of the physical database contained within tables 1 and 2.

6. Concluding remarks

Although the fine details of the electronic density of states as a function of spin resolved Fermi
energies do play an important role in determining the magnetic properties of α-iron, the present
work demonstrates that in terms of the equilibrium magnetic moment, the magnetic energy
contribution to the band energy can be well represented by a Ginzburg–Landau mean field
theoretic model. This result considerably simplifies the problem of modeling the environmental
dependence of the magnetic energy, avoiding the need to accurately model the electronic density
of states and allowing only a second moment description of the electronic density of states
through the parabolic functional form to suffice.
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Appendix. Repulsive potential modification for radiation damage simulations

For primary damage state simulation, the short range properties of the interatomic model need
to be modified to correctly describe the high energy collision dynamics of the early stages of
cascade evolution. This is generally done by modifying the repulsive pair potential so that at
some short range distance the potential converges to the universal screened Coulomb potential
of Biersack and Ziegler [37]:

Vbz(r) = Z 2e2

4πε0r
φ

(
r

as

)
, (A.1)

where the screening function is

φ(x) = 0.1818 exp(−3.2x) + 0.5099 exp(−0.9423x)

+ 0.2802 exp(−0.4029x) + 0.02817 exp(−0.2016x) (A.2)

and the screening length is

as = 0.885 34aB√
2Z

1
3

. (A.3)

In the above aB is the Bohr radius and e2/4πε0 = 14.3992 eV Å. The embedding energy
remains unchanged, with the assumption that at short distances it contributes negligibly due
to the dominance of the above Coulomb term.

Thus the repulsive pair potential will take the following form:

V (r) = Vbz(r), r � r1 (A.4)

= Vit(r), r1 < r < r2 (A.5)

= Vmp(r), r � r2 (A.6)

where Vit (r) is an interpolation function and Vmp(r) is (43). For the present work the
interpolation function is taken as the fifth order polynomial:

Vit (r) = a0 + a1r + a2r2 + a3r3 + a4r4 + a5r5, (A.7)

where the coefficients are chosen to ensure continuity until the second derivative.
In earlier potentials, r1 was often chosen to be less than or close to 1 Å, and r2 typically

near 2 Å or less. Within this range of interatomic distances, the universal potential has values
between 10 and 100 eV, which is the energy regime that controls the threshold displacement
energy—the minimum kinetic energy required to displace irreversibly an atom from its lattice
position. Thus for many published potentials it is the interpolation function that controls this
important regime of interaction, a somewhat unsatisfying situation. For this reason, we choose
r1 = 1.8 Å and r2 = 2.0 Å, so that it is the physically based universal potential that dictates the
physics of the displacement threshold energy. This choice should be considered as a simple
and first approximation to the problem of reproducing the correct bonding physics pertinent
to the threshold energy regime. Table A.1 lists the values of the coefficients of (A.7).
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Table A.1. Polynomial coefficients for interpolation function (A.7).

n an

0 722 18.368 286 582 99e0
1 −180 889.306 183 357 9e0
2 180 517.151 040 168 7e0
3 −896 48.631 976 308 07
4 221 41.238 736 305 31
5 −2174.252 677 819 831
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